Hooke's Law Experiment

Aim

To find the relationship between the extension of a spring and the mass used to cause the extension. To use the relationship to find the spring constant of the spring on the basis of Hooke's Law for springs.

Equipment

Spring, 50 g masses, metre ruler, retort stand, clamp and boss head, electronic balance.

Theory

Theory states that $\mathbf{F}_{\mathbf{s}}=\mathbf{k x}$
where k is the spring constant of the spring $\left(\mathrm{Nm}^{-1}\right)$
x is the spring extension (m)
and F_{s} is the spring force (N)

Method

Measure the length of the spring using valid accuracy improving techniques.
For different masses, hung on the end of the spring, measure
 the full extension of the stretched spring.

Data Results

- Record all measurements in an appropriately labelled results table (including units \& correct significant figures)
- For each mass calculate the Weight force it exerts on the spring, $\mathbf{W}=\mathrm{mg}$ (use acceleration due to gravity of $9.8 \mathrm{~ms}^{-2}$). Assume the Weight force is equal to the restoring spring Force, F_{s} (obeys Newton's $1^{\text {st }}$ Law).
- Plot and draw a graph of force on the spring, F_{s}, against extension of the spring, x.

Analysis \& Conclusion (Answer guided questions)

Discussion

- For each of the accuracy improving techniques you used, explain why it was necessary and how measurement accuracy was improved.
- Your explanations must be particular to the measurements they relate to, not just general statements.

Independent variable (goes on x axis):
Dependent variable (goes on y axis):

Control variables:

Results (table \& graph): Attach to sheet here!

Analysis \& Conclusion:

1. Calculate the gradient of the line on your F_{s} vs x graph. Show your working on your graph gradient: \qquad
gradient unit \qquad
2. a) State the equation of the mathematical relationship between x and F_{s}. Hint: use $y=m x+c$ and your linear graph
\qquad
\qquad
b) Rearrange your equation to make the spring Force $\left(F_{s}\right)$ the subject.

$$
\mathrm{F}_{\mathrm{s}}=
$$

3. If the mass attached to a spring was 340 g , calculate the extension (x) of the spring in meters. Show full working on how you obtained your answer
\qquad
\qquad
\qquad
\qquad
\qquad
4. Determine the spring constant (k) of the spring.

Hint: compare your equation in question2b) to $\mathrm{F}_{\mathrm{s}}=\mathrm{Kx}$
Show your working and state the correct units.

Discussion:

- What steps did you take to ensure accurate results?
\qquad
\qquad
\qquad
- For each of the accuracy improving techniques you used, explain why it was necessary and how measurement accuracy was improved. Your explanations must be particular to the measurements they relate to, not just general statements.
Variables \& Results Table

1.	Variables defined
2.	Variable measurements correctly recorded plus units given
3.	Well labelled with appropriate Significant figures
4.	Accuracy improving technique(s) used

\mathbf{A}	\mathbf{M}	\mathbf{E}

Analysis

5.	Graph axis labelled, unit, scales, well plotted points, appropriate LBF			
6.	Gradient calculated			
7.	Gradient unit given			

Conclusion

8.	Relationship equation stated			
9.	Question 3 calculations correct with full working shown			
10.	Spring constant value \& unit calculated			

Discussion

11. Accuracy improving technique justified
