Hooke's Law Experiment

Aim

To find the relationship between the extension of a spring and the mass used to cause the extension. To use the relationship to find the spring constant of the spring on the basis of Hooke's Law for springs.

Equipment

Spring, 50 g masses, metre ruler, retort stand, clamp and boss head, electronic balance.

Theory

Theory states that $F_s = kx$ where k is the spring constant of the spring (Nm⁻¹) x is the spring extension (m) and F_s is the spring force (N)

Method

Measure the length of the spring using valid accuracy improving techniques.

For different masses, hung on the end of the spring, measure the full extension of the stretched spring.

Data Results

- Record **all** measurements in an appropriately labelled results table (including units & correct significant figures)
- For each mass calculate the Weight force it exerts on the spring, $\mathbf{W} = \text{mg}$ (use acceleration due to gravity of 9.8ms⁻²). Assume the Weight force is equal to the restoring spring Force, \mathbf{F}_{s} (obeys Newton's 1st Law).
- Plot and draw a graph of force on the spring, ${\bf F}_{\rm s},$ against extension of the spring, ${\bf x}.$

Analysis & Conclusion (Answer guided questions)

Discussion

- For each of the accuracy improving techniques you used, explain **why** it was necessary and **how** measurement accuracy was improved.
- Your explanations must be **particular** to the measurements they relate to, **not** just general statements.

Independent variable (goes on x axis):

Dependent variable (goes on y axis):

Control variables:

- •
- •

Results (table & graph): Attach to sheet here!

Analysis & Conclusion:

1. Calculate the **gradient** of the line on your F_s vs x graph. Show your working on your graph

gradient:_____

gradient unit _____

2. a) State the **equation** of the mathematical relationship between x and F_s . Hint: use y=mx +c and your linear graph

b) Rearrange your equation to make the spring Force (F_s) the subject.

 $F_s =$

3. If the mass attached to a spring was 340 g, calculate the **extension** (x) of the spring in meters. Show full working on how you obtained your answer

4. Determine the **spring constant** (k) of the spring. Hint: compare your equation in question 2b) to $F_s = Kx$ Show your working and state the correct units.

Discussion:

- What steps did you take to ensure accurate results?
- For each of the accuracy improving techniques you used, explain **why** it was necessary and **how** measurement accuracy was improved. Your explanations must be **particular** to the measurements they relate to, **not** just general statements.

Vori	ables & Results Table	Α	М	Е
1.	Variables defined			
2.	Variable measurements correctly			
	recorded plus units given			
3.	Well labelled with appropriate			
	Significant figures			
4.	Accuracy improving technique(s) used			
Analysis				
5.	Graph axis labelled, unit, scales, well			
	plotted points, appropriate LBF			
6.	Gradient calculated			
7.	Gradient unit given			
Conclusion				
8.	Relationship equation stated			
9.	Question 3 calculations correct with full			
	working shown			
10.	Spring constant value & unit calculated			
Discussion				
11.	Accuracy improving technique justified			
	Grade reached:	Α	Μ	Ε