Sample Pendulum Report Achieved

Independent Variable: Length of Pendulum in meters

Dependent Variable: Period in seconds

		Average	
		time	
		taken	
		for 1	
Pendulum		period	
length (m)		(s)	
	0.20	0.98	
	0.40	1.30	
	0.60	1.56	
	0.80	1.73	
	1.00	1.98	

Based on the graph of the primary data, this demonstrates a square root relationship with period proportional to the square root of length (T \propto V(L))

Sample Pendulum Report Merit

Independent Variable: Length of Pendulum in meters

Dependent Variable: Period in seconds

Control variables: Angle of release, Mass kept constant

Accuracy Improving Techniques:

For every trial, I measured the time for five periods and took the average. This helped minimize human error in measuring very short times.

I took three trials of every length and found the average which again helped minimize the human error in recording data.

		Square	Average
		root of	time
		Pendulum	taken
		length in	for 1
Pendulum		√(meters)	period
length (m)		(√m)	(s)
	0.20	0.45	0.98
	0.40	0.63	1.30
	0.60	0.77	1.56
	0.80	0.89	1.73
	1.00	1.00	1.98

Based on the graph of the primary data, this demonstrates a square root relationship with period proportional to the square root of length (T \propto V(L))

The slope of the linear graph is

m = 1.78

Because the equation for a line is y = mx and for this experiment,

y = T and x = \sqrt{L} , The equation for the linear graph will be T = m \sqrt{L} or T = 1.78 \sqrt{L}

If the original formula is $T = 2\pi \sqrt{(L/g)}$ Then rearrange to get $T = (2\pi/\sqrt{g}) \times \sqrt{L}$ Therefore $m = (2\pi/\sqrt{g})$

By substituting m into the above equation $1.78 = (2\pi/\sqrt{g})$ Rearrange to get $\sqrt{g} = 2\pi/1.78$ So g = 12.5 m/s^2

Discussion

.....